When Capacitors Fail: Investigating Electrical Fires and Explosions

Determine the Cause, Subrogation Opps

Oil filled capacitors store electrical energy and are used in a variety of electrical applications. These electrical components can fail for a variety of reasons, causing fires, explosions and, consequently, significant damage to buildings and personnel.

Just as the sensitive electrical components themselves require special handling, so too do the p&c claims arising from their malfunction. When investigating a claim resulting from capacitor failure, the insurer will need to determine the cause and weigh potential subrogation opportunities. This process may involve soliciting various experts, including (but not limited to) mechanical and/or electrical engineers.

In this article, we will explore capacitor basics, as well as common reasons for failure, including defective manufacture, defective design, improper installation, shipping damage, or an intervening biologic source (such as a rodent coming into contact with an apparatus.)

First, let's look at the design of a typical capacitor. As evident in the illustration, the two terminals on top are for wire connections. 

The device is often bolted to an electrical chassis via the mounting base. The housing contains the capacitor surfaces and a dielectric oil, which is used to increase the dielectric strength of the gap between the capacitor plates and reduce undesirable electrical discharges (corona discharge). The dielectric oil inside can range from PCB based materials to silicone oils. Typical oils are castor oil, canola oil, mineral oil, ethyl hexyl phthalate, phenyl xylyl ethane, isopropyl biphenyl and polydimethyl siloxane. Failure of oil filled capacitors can occur, resulting in ignition of the dielectric fluid and causing a fire or explosion.

A case study involving an incident where a capacitor failure damaged a small building serves to illustrate the consequences of oil filled capacitor failure.

Figures 2 and 3 are views of a small block wall building that was a shelter for a radio transmitter. The transmitter suddenly quit operating and the radio station went off the air. Investigators found the walls of the building pushed out as indicated by the arrows in Figure 2 below.

 

Figure 2

The damage was consistent with slight internal pressure inside the building, similar to that of a low energy explosion. Below, Figure 3 shows slight overpressure damage near a ventilation duct as indicated by the arrow.

 

Figure 3

Further investigation revealed thermal damage to the inside of an electronic cabinet depicted in Figure 4.

Figure 4

Using thermal damage patterns as a guide, a failed capacitor, which had been badly damaged, was found in the electronic cabinet (Figure 5).

The arrow in Figure 5 to the right points to an oil leakage pattern originating from an oil filled capacitor. There was evidence of oil leakage (arrow) from the capacitor, allowing air to fill the void inside. As the capacitor plates become exposed to the air, the dielectric strength of the plate gap decreases, causing a sudden high energy electrical discharge between plates. This discharge has sufficient energy to ignite oil vapor and cause an explosion, albeit a small one.  

Capacitor failure, such as that previously described, can occur for a variety of reasons.They are defective manufacture, defective design, improper installation, shipping damage or an intervening biologic. Defective manufacture includes not enough fluid in the capacitor, insufficient plate gap or improper sealing of the capacitor housing.

Figure 5

Faulty Installation

Defective design includes improper electrical specification (using the unit at an excessive voltage) or insufficient cooling of the electronic equipment. Examples of improper installation are excessive strain on the capacitor housing from mounting or deforming the unit during installation. Damage to the capacitor case can result in plate gap reduction that can cause a discharge and capacitor failure.

Finally, an intervening cause such as a rodent (biologic) contacting the two electrodes simultaneously will likely cause a capacitor failure.

Page 1 of 5
Comments

Resource Center

View All »

Contractors General Liability Coverage 102

What is a prior work exclusion? Which option is right for my client? Why do...

Sign up today to get a 50% matching credit -...

Insurance marketing sometimes seems like it's a game of swings and misses, but we're here...

Guide: 5 Steps to Selling Cyber

Cyber risk and data security is on the agenda of every business owner and executive....

Citation Correlation

Do rigger and signalperson qualifications correlate with the cause of crane and rigging accidents? ...

Complete Guide to Electronic Signatures in Property & Casualty Insurance...

In property and casualty insurance, closing new business quickly is key. Learn how to leverage...

INSTANT ACCESS: Complimentary Sales Closer Questionnaires

Help property owners or managers compare your commercial residential property insurance coverage vs. the competition....

Determining Vacant Property Perils and Valuations

Are your clients fully covered for Vacant Properties? In this economic climate, your insureds may...

Risk Management for Law Firms

This package of 3 concise risk management articles offers straightforward content and practical suggestions law...

Guide: Top 15 E&O Risks-And How To Avoid Them

Accidents happen. But when it's an errors and omissions oversight, that accident can open your...

We'll Show You How to Reach Your Sales Goals

Whether you work alone or have a team of agents working for you, we can...

Claims Connection eNewsletter

Breaking news on disasters, fraud, legal trends, technology, and CE initiatives for the P&C claim professional – FREE. Sign Up Now!

Claims-Handling Guidelines

Claims Magazine is providing the following free guidelines and regulations in order to help adjusting professionals stay abreast of each state’s unique property and casualty claim-handling requirements.

View our State Guidelines »

Advertisement. Closing in 15 seconds.